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Abstract. The dynamics of a single fluid bilayer membrane in an external hydrodynamic flow field is
considered. The deterministic equation of motion for the configuration is derived taking into account
both viscous dissipation in the surrounding liquid and local incompressibility of the membrane. For quasi-
spherical vesicles in shear flow, thermal fluctuations can be incorporated in a Langevin-type equation of
motion for the deformation amplitudes. The solution to this equation shows an overdamped oscillatory
approach to a stationary tanktreading shape. Inclination angle and ellipticity of the contour are determined
as a function of excess area and shear rate. Comparisons to numerical results and experiments are discussed.

PACS. 47.15.Gf Low-Reynolds-number (creeping) flows – 68.15.+e Liquid thin films –
82.70.-y Disperse systems

1 Introduction

The equilibrium behavior of fluid vesicles made up of a
single lipid bilayer membrane has been studied in great
detail and is by now well understood [1]. These equilib-
rium phenomena comprise the occurrence of a multitude
of vesicle shapes and their thermal fluctuations. If exter-
nal parameters such as temperature or osmotic conditions
are changed, such a shape may become unstable and settle
into the next dynamically accessible minimum of bending
energy. The dynamics of such a shape change, however, is
a non-equilibrium process. In general, only very little is
known systematically and quantitatively about this and
other non-equilibrium phenomena of fluid vesicles.

A rough classification of non-equilibrium phenomena
should distinguish between two types. First, there is re-
laxation into a new equilibrium after a parameter change.
This class comprises the above mentioned decay of a
metastable shape such, e.g., as the budding process
[2,3]. The best studied case of this class is the spectacular
pearling instability of cylindrical vesicles, which develops
upon action of optical tweezers [4].

The second class of nonequilibrium behavior refers to
genuine non-equilibrium states induced by external fields
such as hydrodynamic flow fields. The behavior of vesi-
cles under such conditions has only recently been started
to be explored theoretically [5–7] and in experiment [8].
We developed a numerical code which allows to follow the
shape evolution of vesicle in shear flow [5]. As a main
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result, we found that the shape finally settles into a non-
axisymmetric stationary ellipsoidal shape around which
the membrane exhibits tanktreading motion. Quantita-
tive predictions include the inclination angle and the tank-
treading frequency as a function of reduced volume and
shear rate. This work left aside two interesting aspects.
First, the regime of very small shear rates was difficult
to reach within this numerical approach because of long
relaxation times. Even though the numerical data seemed
to indicate that shear is a singular perturbation, no clear
assessment of this regime was possible. Secondly, fluctu-
ations, which would be particularly important at small
shear rate, were not included into the numerical algorithm.

The purpose of this paper is twofold. First, we present
somewhat more explicitly the underlying continuum the-
ory for the dynamical evolution of an incompressible fluid
membrane in an external flow field thereby generalizing
previous work on dynamics of membranes in quiescent
fluids [9] and within a Rouse model [10]. The resulting
equations are strongly non-linear and must, in general, be
solved numerically. Analytical progress, however, is possi-
ble for so-called quasispherical vesicles [11–17] for which
deviations from a sphere remain small throughout the pa-
rameter space. Focussing on such vesicles, it becomes pos-
sible to include the effect of thermal fluctuations which is
the second objective of this paper. A main effect of ther-
mal fluctuations in fluid membranes is that they store or
“hide” area in the suboptical range [18]. The present work
addresses the issue of how external flow pulls out hidden
area from thermal fluctuations. Apart from its fundamen-
tal significance such a study is motivated also by the so far
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only published experiments on the behavior of vesicles in
shear flow [8]. In this experiment initially spherical vesi-
cles elongate under shear thereby pulling out area from
thermal fluctuations. The theory developed here should
be used to analyze such experiments.

For a somewhat broader perspective, it may be im-
portant to point out that there exists a vast literature on
the behavior of a “soft sphere” in shear flow ranging from
liquid droplets [19,20] to elastic capsules [21–23] or inert
ellipsoids [24–26] modeling red-blood-cells [27] or syn-
thetic microcapsules [28]. Many of these systems show
ellipsoidal deformations with revolving or tanktreading
motion. The details of deformation, inclination angle and
tanktreading frequency, however, depend crucially on both
the constitutive relation for the elasticity of the “inter-
face” of the soft sphere and the dissipative mechanisms
involved. In our case, the membrane is determined by
bending elasticity and local incompressibility. The main
dissipation occurs in the surrounding fluid.

How thermal fluctuations are affected by shear flow
seems not to have been touched upon in these studies of
soft spheres. For the topologically much simpler case of
on average planar membranes in a dilute lamellar phase,
the layer spacing is predicted to decrease with increasing
shear due to the suppression of fluctuations [29,30].

This paper consists of five sections, of which this is
the first. Section 2 discusses the physical model under-
lying this work and derives the fundamental equation of
motion for an incompressible membrane in external flow.
In Section 3, we specialize to quasi-spherical vesicles in
linear flow. In Section 4, we discuss in detail shear flow
for which we solve the equations explicitly and compare
to available numerical and experimental work. A summa-
rizing discussion is presented in Section 5.

2 Formalism

2.1 Physical model

The starting point for the dynamics of a fluid membrane
is the bending energy [31]

Fκ ≡
κ

2

∫
dA(2H − C0)2. (1)

Here, κ is the bending rigidity, H is the local mean cur-
vature and C0 a spontaneous curvature in the case of in-
trinsically asymmetric monolayers or an asymmetric liq-
uid environment. We neglect Gaussian curvature energy
which would enter only through boundary values, since
we focus on the dynamics of a closed membrane. For sim-
plicity, we also neglect the fact that for closed membranes
a second energy term becomes relevant which takes into
account that the bilayer consists of two tightly coupled
monolayers which do not exchange molecules [32].

The bending energy is the driving force for dynami-
cal changes. Dynamics in the micron world of vesicles is
overdamped, i.e. inertial effects can safely be ignored as

can easily be checked a posteriori by calculating the cor-
responding Reynolds number [33]. Dissipation takes place
both in the surrounding liquid and in the membrane, in
principle. For giant vesicles of micron size, the dominant
dissipation is viscous dissipation in the embedding fluid
[34,35]. Therefore, a full treatment of the hydrodynamics
of this fluid is mandatory for a faithful description of the
dynamics of membranes.

Dissipation in the membrane can be classified into
three phenomena: Drag between the two monolayers [36],
shear viscosity within each layer and permeation through
the membrane. Calculation of the relaxation spectra of
bending fluctuations involving the first two mechanisms
show that on scales of microns and larger, hydrody-
namic dissipation is dominant [37]. In the submicron
range, friction between the layers becomes relevant. On
even smaller scales of several nanometer, shear viscosity
within each layer should be included. Finally, perme-
ation through the membrane seems to be irrelevant on all
length-scales with the possible exception of membranes in
the vicinity of a substrate [38].

Based on this hierarchy of dissipative mechanisms, we
will include only hydrodynamic dissipation and model the
membrane as impermeable for liquid. As a consequence,
the normal velocity of the fluid at the membrane pushes
along the membrane and leads to a shape change. Tan-
gential motion of the fluid along the membrane induces
lipid flow within the membrane since we employ non-slip
boundary conditions between fluid and membrane. One
could allow for some slip with a phenomenological fric-
tion coefficient. In the absence of any evidence for such a
phenomenon, however, we choose for simplicity the no-slip
condition used so far. Finally, we require that the mem-
brane remains locally incompressible.

2.2 Elementary differential geometry of the membrane

The instantaneous membrane configuration R(s1, s2),
parametrized by internal coordinates (s1, s2), is embed-
ded in the three dimensional space. This space will be
parametrized by Cartesian (x, y, z) or spherical (r, θ, φ)
coordinates as r = xαeα = rer where α = x, y, z. Summa-
tion over double indices is implied throughout the paper.
There are two tangential vectors

Ri ≡ ∂iR(s1, s2) for i = s1, s2, (2)

from which one obtains the metric tensor

gij ≡ Ri ·Rj. (3)

Its determinant, g ≡ det(gij), yields the area element

dA =
√
g ds1ds2. (4)

The normal vector, n(s1, s2), is given by

n =
R1 ×R2

|R1 ×R2|
· (5)
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Finally, the mean and the Gaussian curvature follow from
the curvature tensor

hij ≡ (∂i∂jR) · n (6)

as

H ≡
1

2
hii (7)

and

K ≡ det(hij), (8)

where hij ≡ gikhkj and gij are the matrix elements of
the matrix inverse of (gij). Following the convention used
in differential geometry, a sphere with the usual spherical
coordinates (s1 = θ, s2 = φ) has H < 0. A membrane
configuration has bending energy Fκ given in (1).

In order to ensure local incompressibility of the mem-
brane, we will need a local Lagrange multiplier Σ(s1, s2)
which we call local surface tension. It will be determined
self-consistently below. The total “energy” thus becomes

F ≡ Fκ +

∫
ds1ds2

√
g Σ(s1, s2). (9)

2.3 Equation of motion

Any non-equilibrium membrane configuration exerts a lo-
cal three dimensional force density

f(r) ≡ −

∫
ds1ds2

√
g

(
1
√
g

δF

δR

)
δ(r −R(s1, s2))

(10)

onto the surrounding fluid.
The variational derivative entering the force density

reads explicitly(
1
√
g

δF

δR

)
= (−2ΣH + κ[(2H − C0)(2H2 − 2K + C0H)

+ 2∆H])n− gijRi∂jΣ. (11)

Here,

∆ ≡ (1/
√
g)∂i(g

ij√g∂j). (12)

is the Laplace-Beltrami operator on the surface. The nor-
mal part of (11) is well-known from the stationarity condi-
tion of membrane configurations [39]. The tangential part
arises from inhomogeneities in the surface tension which
will be needed to ensure local incompressibility of the in-
duced flow. This approach differs from the one used in
reference [9] where a finite compressibility was introduced
for renormalization purposes.

The surrounding liquid is incompressible

∇v = 0 (13)

and obeys the Stokes equations

∇p− η∇2v = f(r). (14)

A special solution of the inhomogeneous Stokes equation
for the velocity field reads

vind(r) =

∫
dr′O(r, r′)f(r′), (15)

where the Oseen tensor O(r, r′) has Cartesian matrix ele-
ments [40]

Oαβ(r, r′) ≡
1

8πη|r− r′|

[
δαβ +

(rα − r′α)(rβ − r′β)

|r− r′|2

]
.

(16)

Thus, the hydrodynamics mediates a long-range interac-
tion (∼ 1/|r−r′|) through the velocity field. To this veloc-
ity field vind(r) induced by the presence of the membrane,
we must add the externally applied flow field v∞(r) to ob-
tain the total velocity field

v(r) = v∞(r) + vind(r). (17)

Such a simple superposition becomes possible since the
Stokes equation is linear due to the absence of the con-
vective term. The value of the total velocity field at the
position of the membrane yields the equation of motion
for the membrane configuration

∂tR(s1, s2) = v∞(R(s1, s2)) + vind(R(s1, s2)),
(18)

since we employ no-slip boundary conditions at the
membrane. This deterministic equation of motion includes
both normal motion that signifies a shape change of the
membrane and tangential motion that corresponds to lipid
flow within the membrane. The so far unknown local ten-
sion Σ(s1, s2) is determined by requiring that the mem-
brane flow induced by this equation obeys local incom-
pressibility. Thus, we must demand

∂t
√
g = 0, (19)

which implies explicitly

gijRi∂j(∂tR) = 0. (20)

Upon insertion of the equation of motion (18) with
(10, 15), this condition becomes a partial differential equa-
tion for the unknown tension Σ(s1, s2).

Equations (18, 20) yield a deterministic evolution
equation for a membrane configuration under the action of
bending energy and hydrodynamics. For any given initial
membrane configuration, the solution to these equations
will run into the next dynamically accessible local mini-
mum of bending energy. In general, these equations must
be solved numerically. For vesicles in shear flow, this has
been achieved recently [5].

3 Quasi-spherical vesicle in flow

In this section, we apply the general formalism to quasi-
spherical vesicles [11–17] for which analytical progress
becomes possible.
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3.1 Expansion around the sphere

A quasispherical vesicle is characterized by its volume

V ≡
4π

3
R3, (21)

which defines R, and its fixed area

A ≡ (4π +∆)R2, (22)

which defines the (dimensionless) excess area ∆.
The instantaneous vesicle shape R(θ, φ) ≡ R(θ, φ)er

can be parametrized by spherical harmonics

R(θ, φ) = R

1 +

lmax∑
l≥0

l∑
m=−l

ul,mYlm(θ, φ)

 ,
(23)

where |m| ≤ l and ul,−m = (−1)mu∗l,m. The upper cutoff

lmax is of order R/d where d is the membrane thickness.
For a vesicle with R ' 10−50µm, lmax is of order 104.
Since spontaneous curvature is irrelevant for the shape be-
haviour of quasi-spherical vesicles [17], we set for the rest
of the paper C0 = 0. Expanding the geometrical quanti-
ties as well as the bending energy around a sphere, one
has [12,13,39]

Fκ/κ = 8π +
1

2

lmax∑
l≥0

l∑
m=−l

|ul,m|
2(l + 2)(l + 1)l(l− 1)

+O(u3
l,m), (24)

A = R2

(
4π

(
1 +

u0,0√
4π

)2

+

lmax∑
l≥1

l∑
m=−l

|ul,m|
2

× (1 + l(l+ 1)/2) +O(u3
l,m)

)
, (25)

and

V =R3

4π

3

(
1+

u0,0√
4π

)3

+

lmax∑
l≥1

l∑
m=−l

|ul,m|
2+O(u3

l,m)

 .

(26)

The volume constraint (21) fixes the amplitude u0,0 as a
function of the other amplitudes

u0,0 = −
lmax∑
l≥1

l∑
m=−l

|ul,m|
2/
√

4π, (27)

where we truncate from now on the cubic terms. If this
value is inserted into (25), the area constraint (22) be-
comes

lmax∑
l≥1

l∑
m=−l

|ul,m|
2 (l + 2)(l − 1)

2
= ∆. (28)

Since the (l = 1)-modes correspond to translations, which
have to be omitted, from now on all sums start at l = 2.
We will abbreviate

∑
l,m

≡
lmax∑
l≥2

l∑
m=−l

. (29)

We now add the global area constraint (28) with a
Lagrangian multiplier

Σ ≡ κσ/R2 (30)

to the quadratic part of the curvature energy. This leads
to a quadratic expression for the total “energy” (9)

F =
κ

2

∑
l,m

El|ul,m|
2, (31)

with

El = (l + 2)(l − 1)[l(l+ 1) + σ]. (32)

The instantaneous state of a vesicle must be characterized
not only by the set of its deformations ul,m but also by its
instantaneous surface tension

Σ(θ, φ) ≡
κ

R2
(σ +

∑
l,m

σl,mYl,m(θ, φ)). (33)

The homogeneous value σ = σ0,0, which will be called
effective tension, has already been included into the energy
(32).

3.2 Velocity field

The notion of a quasi-spherical vesicle implies that the de-
viations u(θ, φ) from the spherical shape are small. Then
stresses caused by bending moments and an inhomoge-
neous surface tension can be assumed to act on the sphere
rather than on the deformed vesicles’s surface. Like-
wise, all velocity fields will be evaluated and matched at
the sphere. We retain this procedure for arbitrary flow
strength even though it is strictly valid only for small
external fields. As will be discussed in Section 4.4 be-
low, while not modifying scaling laws, this approximation
causes an error in numerical prefactors at large shear rates
of at most 30%.

The instantaneous stress distribution caused by both
the deformation and the inhomogeneous surface tension
induces an irrotational velocity field vind(r) which we de-
termine in the Appendix adapting the classical Lamb so-
lution [33]. For this purpose, it is convenient to define
another three-dimensional velocity field

Vind(r) ≡ vind(R, θ, φ) (34)

which extends the velocity field on the sphere that cor-
responds to the vesicle formally to all space. Vind(r) is
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r-independent. This velocity field can then be character-
ized by its normal component

Xind ≡
∑
l,m

Xind
l,mYl,m(θ, φ) ≡ Vind(R, θ, φ)er

(35)

and the negative of its divergence

Y ind ≡
∑
l,m

Y indl,m Yl,m(θ, φ) ≡ −R ∇Vind, (36)

where Yl,m(θ, φ) are the usual spherical harmonics. Al-
though the full three-dimensional velocity field vind(r) is
divergenceless, the derived quantity Vind(r), in general, is
not.

Normal and tangential stress balances on the vesicle
surface determine vind(r) as a function of the displace-
ment u(θ, φ) and the surface tension σ(θ, φ). As shown in
the Appendix, we can determine the linear relationship
between the expansion coefficients of the induced velocity
on the sphere {Xind

l,m , Y
ind
l,m } and the sources of this field

{ul,m, σl,m}. Replacing σl,m by Xind
l,m and Y indl,m , one finally

gets

Xind
l,m = −(κ/ηR2) ΓlElul,m −BlY

ind
l,m , (37)

where

Γl ≡
l(l + 1)

4l3 + 6l2 − 1
(38)

and

Bl ≡
2l + 1

4l3 + 6l2 − 1
· (39)

It is convenient to characterize the external flow field
v∞(r) in a similar manner. We therefore define

V∞(r) ≡ v∞(R, θ, φ), (40)

its normal component

X∞ ≡
∑
l,m

X∞l,mYl,m(θ, φ) ≡ V∞(R, θ, φ)er
(41)

and its divergence

Y∞ ≡
∑
l,m

Y∞l,mYl,m(θ, φ) ≡ −R∇V∞. (42)

The equation of motion (18) for the quasi-spherical vesicle
in this external flow thus becomes

∂tR(θ, φ) = V∞(θ, φ) + Vind(θ, φ). (43)

The local incompressiblility condition (20) becomes after
little algebra

∇(V∞ + Vind) = 0, (44)

or

Y ind = −Y∞. (45)

Physically, the incompressibility condition fixes the local
surface tension which we have already eliminated in favor
of Y ind.

We will now set up the equation of motion for the nor-
mal deviation, u(θ, φ), from the perfect sphere, where θ
and φ are fixed coordinates in the lab frame. It is impor-
tant to realize that (43) leads to a tangential motion of the
material point labeled by (θ, φ). Therefore it is not suffi-
cient to project (43) onto er in order to get the normal
shape change in the lab frame. We also have to include
an advection term as for planar membranes [29,30]. The
equation of motion thus becomes

∂tu(θ, φ) = −(V∞ + Vind)∇u(θ, φ) + (X∞ +Xind)/R.
(46)

Note that the advection term can be written in terms of
three-dimensional vectors because u carries no r depen-
dence. In general, the advection term will couple the dif-
ferent modes. Further progress becomes possible for the
quite wide class of linear external flow.

3.3 Langevin equation for linear flow

Linear external flow is characterized by the form

v∞(r) = Gr (47)

where G is a traceless r-independent matrix. It can be
decomposed according to

v∞(r) = Gsr + Ω× r, (48)

where Ω denotes magnitude and direction of the rotational
part of the flow and Gs is a symmetric traceless matrix de-
scribing the strain or irrotational component of the flow.
The strain component of the external flow is compensated
by the corresponding induced flow because of the incom-
pressibility constraint. The advection term thus involves
only the rotational component of the external flow and
reads

−(Ω× r)∇u(θ, φ) = −iΩ(L/~)u(θ, φ), (49)

where L ≡ r × (−i~∇) is the angular momentum opera-
tor. Choosing co-ordinates such that Ω = Ωez , we finally
obtain from (46) the equation of motion

∂tul,m = −iΩm ul,m − (κ/ηR3)ΓlEl ul,m

+ (X∞l,m +BlY
∞
l,m)/R+ ζl,m (50)

after expanding in spherical harmonics and using (37, 45).
In order to determine the correlations of the thermal

noise ζl,m we apply this equation of motion to equilibrium
[11–13]. Then, there is no external flow, Ω = X∞l,m =
Y∞l,m = 0. In the long time limit, the dynamical equal

time correlations calculated from (50) will reproduce the
static correlations only if we choose

〈ζl,m(t)ζl′,m′(t
′)〉 = 2T (Γl/ηR

3)(−1)mδl,l′δm,−m′δ(t− t
′).

(51)
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Here, T is the temperature and Boltzmann’s constant is
set to 1 throughout.

We keep the noise correlations (51) in the presence of
external flow. While this is certainly correct for small flow
it is not clear whether and how strong flow modifies these
correlations. Note in passing that we have refrained from
adding noise to the general equation of motion (18), since
the appropriate correlations for these forces are not clear
for the same reason. Naively, one would expect them to
exhibit long-range spatial correlations given by the Oseen
tensor for small flow. Moreover, even in equilibrium, there
are subtleties associated both with the incompressibility
constraint and measure factors [9].

The stationary value ūl,m of the amplitude ul,m(t) fol-
low from (50) as

ūl,m =

(
ηR2

κ

)(
X∞l,m +BlY

∞
l,m

ΓlEl + iΩ̃m

)
, (52)

where

Ω̃ ≡ ΩηR3/κ. (53)

For linear flow, ūl,m 6= 0 only for l = 2.
The deviations from this stationary value,

εl,m(t) ≡ ul,m(t)− ūl,m, (54)

obey the equation of motion

∂t εl,m = −iΩm εl,m − (κ/ηR3)ΓlEl εl,m + ζl,m.
(55)

This simple equation is easily solved as

εl,m(t) = exp[(−(κ/ηR3)ΓlEl − iΩm)t]

×

(∫ t

o

dτ exp[((κ/ηR3)ΓlEl+iΩm)τ ]ζl,m(τ)+εl,m(0)

)
.

(56)

Starting from an initial value εl,m(0), the approach to the
stationary value (52) thus happens via damped oscillations
up to thermal fluctuations.

Using the noise correlations (51), the dynamical corre-
lation function in the long time limit become

lim
t→∞
〈εl,m(t)εl,−m(t+∆t)〉 =

(−1)m exp[(−(κ/ηR3)ΓlEl + imΩ)∆t]
T

κEl
(57)

with the stationary correlations

lim
t→∞
〈εl,m(t)εl,−m(t)〉 = (−1)m

T

κEl
· (58)

3.4 Area constraint and effective tension

As a last step, we have to eliminate the yet unknown La-
grange multiplier or effective tension σ in favor of physical
quantities using the area constraint (28). Excess area is

stored both in the systematic stationary amplitudes ūl,m
as well as in fluctuations εl,m. For the systematic part, we
get

∆̄ ≡
∑
l,m

(l + 2)(l − 1)

2
|ūl,m|

2

= 2

(
ηR2

κ

)2 2∑
m=−2

(
(X∞2,m +B2Y

∞
2,m)2

Γ 2
2E

2
2 + Ω̃2m2

)
.

(59)

The fluctuation contribution ∆l,m of the mode εl,m to the
excess area is

∆l,m ≡
(l + 2)(l − 1)

2
|εl,m|

2 =
(l + 2)(l − 1)

2

T

κEl
·
(60)

The total area constraint becomes

∆ = 2

(
ηR2

κ

)2 2∑
m=−2

(
(X∞2,m +B2Y

∞
2,m)2

Γ 2
2E

2
2(σ) + Ω̃2m2

)

+
T

2κ

∑
l,m

(l + 2)(l − 1)

El(σ)
, (61)

where we made the σ-dependence of El explicit. This mas-
ter equation determines the unknown effective tension σ
as a function of the physical parameters T/κ and those
characterizing the external flow. In general, it must be
solved numerically.

4 Shear flow

In this section, we specialize the general results of the
previous section to the experimentally important case of
simple shear flow with shear rate γ̇.

4.1 Flow parameters

We choose the coordinate system such that the externally
imposed simple shear flow reads

v∞(r) = γ̇yex = γ̇[(y/2)ex + (x/2)ey)]− (γ̇/2)ez × r.
(62)

We have separated the rotational component and identify

Ω = −γ̇/2 and Ω̃ = −χ/2, (63)

where

χ ≡ γ̇ηR3/κ (64)

is the dimensional shear rate. The elongational first part
of the shear flow can be written as

γ̇[(y/2)ex + (x/2)ey)] = γ̇r(sin2 θ sinφ cosφer

+ (1/2) sin θ(cos2 φ− sin2 φ)eφ

+ sin θ cos θ sinφ cosφeθ).
(65)



U. Seifert: Membranes in flow fields: quasispherical vesicles in shear flow 411

One thus has

X∞ = Y∞ = γ̇R sin2 θ sinφ cosφ (66)

and identifies the expansion coefficients in spherical
harmonics as

X∞2,±2 = Y∞2,±2 = ∓iγ̇R(2π/15)1/2 (67)

and any other X∞l,m = Y∞l,m = 0. Note as an aside that
X∞ = Y∞ holds for any linear flow.

4.2 Effective tension

We must eliminate the effective tension σ in favor of the
area constraint. The external shear flow implies the non-
zero stationary amplitudes (52)

ū2,±2 =
∓iχ(12/11)(2π/15)1/2

Γ2E2 ∓ iχ
, (68)

where we used B2 = 1/11. According to (59) the system-
atic part of excess area stored in the modes ū2,±2 con-
tributes

∆̄ = 2(|ū2,2|
2 + |ū2,−2|

2) = a2
χ2

Γ 2
2E

2
2 + χ2

(69)

where

a2 ≡ 4(12/11)22π/15 ' 1.994. (70)

The area stored in the fluctuations becomes

T

2κ

∑
l,m

(l + 2)(l − 1)

El
=

T

2κ

∑
l≥2

2l+ 1

l(l + 1) + σ

=
T

2κ

5

6 + σ
+
T

2κ

∑
l≥3

2l+ 1

l(l + 1) + σ
· (71)

Replacing the last sum by an integral, we obtain the total
area constraint in the form

a2
χ2

Γ 2
2E

2
2 + χ2

+
T

2κ

(
5

6 + σ

)
+
T

2κ
ln

(
l2max + σ

12 + σ

)
= ∆.

(72)

This equation can easily be solved numerically for σ =
σ(χ, T/κ, lmax). However, it is more instructive to discuss
limiting cases and the general behavior analytically.

For vanishing shear rate, i.e., in equilibrium, the area
constraint implies the three regimes [17]):

(i)Tense regime: For ∆� T/2κ, one obtains from (72)

σ ≈
T

2κ∆
l2max. (73)

In this regime, allN modes share the available excess area.
(ii) Entropic regime: For T/2κ � ∆ � (T/κ) ln lmax,

the tension depends exponentially on the excess area [18]

σ ≈ l2maxe
−2κ∆/T . (74)

(iii) Prolate regime: For (T/κ) ln l2max � ∆ <
∼ 1, most

of the excess area is stored in the (l = 2)-modes. The
tension approaches the limiting value −6 [13,17]:

σ ≈ −6 +
5

2

T

κ∆
· (75)

A vesicles that is relaxed with respect to its volume con-
straint also belongs to this regime with σ = 0.

For large shear rate, i.e., formally χ → ∞, the whole
excess area is stored in the ū2,±2 deformation. From

∆̄ = 2(|ū2,2|
2 + |ū2,−2|

2) = a2
χ2

Γ 2
2E

2
2 + χ2

= ∆,
(76)

one obtains

Γ2E2 = χ

(
a2 −∆

∆

)1/2

(77)

and hence, with E2 ≈ 4σ and Γ2 = 6/55, the limiting
behavior

σ ≈ (55/24)a
1/2
2 χ/∆1/2 ' 3.24χ/∆1/2 · (78)

Thus, for large shear rate, the tension increases linearly
with shear rate with a prefactor that depends as an inverse
square root on the excess area.

The cross-over between the equilibrium tension and
this shear rate dominated saturation regime happens at
χc. The scaling behavior of the cross-over shear rate χc
can be obtained by defining χc as the value for which half
of the excess area is stored in the systematic contribution
∆̄. This leads to the expression

χc ∼


l2maxT/κ∆, tense,

l2maxe
−2κ∆/T , entropic,

T/κ∆, prolate.

(79)

4.3 Shape parameters

Knowing the value of the effective tension as a function
of the excess area, we can determine the characteristic
parameters of the shear rate dependent shape of a quasi-
spherical vesicle.

The deviation of the mean contour from a circle in the
plane z = 0, i.e., θ = π/2, becomes

u(π/2, φ) = 2Re {u2,2Y2,2(π/2, φ)}

=
6

11

χ

(Γ 2
2E

2
2 + χ2)1/2

cos 2(φ− φ0),
(80)

with the mean inclination angle

φ0 =
1

2
arctan

Γ2E2

χ
· (81)
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Thus, the mean inclination angle is φ0 = π/4 for small
shear flow. For large shear rate, the limiting behavior

φ0 ≈
1

2
arctan

(
a2 −∆

∆

)1/2

≈ π/4−
∆1/2

2a
1/2
2 (82)

follows from (77). Thus, the more excess area is available,
the smaller the inclination angle. The cross-over between
the two limiting cases happens at the cross-over shear rate
χc given in (79).

Experimentally, the ellipticity of such a contour is
often measured by the deformation parameter

D ≡
L−B

L+B
=

6

11

χ

(Γ 2
2E

2
2 + χ2)1/2

, (83)

where 2L and 2B are the long and short axes, resp., of the
contour. For small shear rate χ, the equilibrium scaling
of the tension (73–75) in the three regimes implies the
following linear behavior of the deformation parameter D
on χ as

D ≈
6

11

χ

Γ2E2
=

6

11

χ

(24/55)(6 + σ)

≈
5

4
χ ·


2κ∆

T l2max
, tense,

e2κ∆/T /l2max, entropic,

(2κ∆/5T ), prolate.

(84)

With increasing shear rate, deviations from this linear
behavior become important at the cross-over χc (79). For
χ� χc, the deformation saturates at the value

D ≈
√

15∆/32π, (85)

obtained by combining (83) with (69).

4.4 Comparison to numerical work

For large shear rate, fluctuations become irrelevant. In this
regime, we can make contact with previous numerical work
where the continuum equation of motions (11, 20) were
solved on a triangulated mesh [5]. Of course, one should
compare results only for small excess area where devia-
tions from the spherical shape are small. The two quanti-
ties that can be compared within the two approaches are
the asymptotic dependence of the inclination angle and
the effective tension on the excess area. In the previous
work, reduced volume

v ≡
V

(4π/3)(A/4π)3/2
= (1 +∆/4π)−3/2 (86)

was used instead of the excess area. This definition implies

∆ = 4π(v−2/3 − 1). (87)

Hence the present theory predicts for large shear rate and
1− v � 1 the limiting behavior

φ0 ≈
π

4
−

(
2π(1− v)

3a2

)1/2

'
π

4
− 1.025(1− v)1/2.

(88)

This square-root scaling is in quantitative agreement with
the previous numerical solution [5]. The numerical pref-
actor within the present approach is about 10% larger
than the one extracted from Figure 2 of reference [5]. Like-
wise, the scaling of the effective tension (78) agrees with
the numerical data [41] with a difference in prefactor of
about 30%.

The origin of the numerical difference in prefactors pre-
sumably lies in neglecting higher order couplings between
deformation and external flow in the equation of motion
(50). These effects would lead to non-diagonal and non-
linear terms in the right hand side of (50) which would
spoil the solvability. It is therefore gratifying to know that
at least for the inclination angle of the tanktreading state,
the present treatment is quite reliable for v ≥ 0.8 at any
shear rate.

4.5 Comparison to experiment

There seems to be only one published experiment on
quasi-spherical vesicles in shear flow [8]. In this work,
two different types of behavior have been reported.
(i) Initially spherical vesicles rotate at low shear rate and
deform at higher shear rates into a tanktreading state
with an inclination angle close to π/4. (ii) Initially non-
spherical vesicles undergo a periodic flipping motion at
small shear rate. This flipping motion shows oscillations
at larger shear rate. Only for sufficiently high shear rate,
stationary behavior with tanktreading is observed.

The first class of behavior fits well into the theoreti-
cal description developed here. The experimentally found
D(γ̇) curve shows linear behavior at small γ̇ and seems to
saturate at larger shear rate. de Haas et al. [8] analyzed
this curve using a theoretical approach which may look
superficially similar to the one developed here. For future
reference, we discuss briefly the differences between these
two approaches. De Haas et al. use

γ̇ =
4ΣD

5Rη
exp

64πκ

15T
D2, (89)

in our notation. The corresponding expression within our
approach derived from (83) reads

γ̇ =
4DΣ

5ηR
(1 +

6κ

ΣR2
)

(
1−

(
11D

6

)2
)−1/2

(90)

in dimensionalized units. The κ term in the first paren-
thesis arises from keeping bending energy in the force bal-
ance. De Haas et al. deliberately ignore bending as being
irrelevant for large tension which is true in the tense and
upper part of the entropic regime. Then both expression
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yield the same linear behavior at small D. The non-linear
regime, however, is markedly different with no exponential
term in our theory. Note also that, within our approach,
Σ still carries an implicit γ̇ dependence.

The second type of reported behavior cannot so easily
be reconciled with the present theory which predicts a
stationary tanktreading shape for all values of shear rates
and excess area. However, the theory allows for a transient
damped oscillatory approach to this stationary state. In
the prolate regime, the relaxation time

τ2 ≡ ηR
3/κΓ2E2 (91)

can become large for large enough excess area because
then formally E2 → 0 as ∆→∞. For large enough shear
rate, the product of oscillation frequency γ̇ with the re-
laxation time τ2 can become large. In this case, many os-
cillations can occur before the stationary state is reached.
Thus, after turning on shear flow or changing the shear
rate one expects transient flipping motion and oscillatory
behavior. Still, the present theory predicts finally a set-
tling into a stationary tanktreading state.

5 Discussion

For a fluid membrane in an external hydrodynamic field,
we derived a deterministic equation of motion taking into
account both viscous dissipation in the surrounding liquid
and local incompressibility of the membrane. For quasi-
spherical vesicles in linear external flow, this equation
decouples in an expansion in spherical harmonics. The
area constraint is implemented by an effective tension
that depends on shear rate. Adding noise with correla-
tions adapted from equilibrium, we obtain a Langevin-
type equation. Its solution for shear flow yields transient
oscillations which settle into a stationary tanktreading
state. The inclination angle and the deformation param-
eter are both calculated as a function of shear rate and
excess area. For small shear rate, the inclination angle be-
comes π/4. With increasing shear rate it decreases the
stronger the larger the excess area is. The deformation
parameter increases linearly with shear rate with a slope
depending on excess area.

This work is complementary to our previous study
where we solved the deterministic equations numerically
for arbitrary excess area ignoring fluctuations [5]. Taken
together, the two approaches yield a fairly complete pic-
ture for the behavior of fluid vesicles in all phase space.
There remains only one explored region. For an excess area
too large for the quasi-spherical approximation to apply
and a shear rate too small for the numerics to handle,
neither approach is well-suited. In this regime, one would
naively expect that small shear leads to small distortions
around the fluctuating equilibrium shape. However, this
remains to be checked by an explicit calculation.

A relatively straightforward extension of the present
theory would be the inclusion of further dissipative mech-
anisms such as inter-monolayer drag and shear within each

monolayer. While both types will certainly affect the tran-
sient behavior, it is less likely that monolayer shear vis-
cosity changes the stationary results for quasi-spherical
vesicles since the rotational component of the flow does
not lead to shear within the layer. Likewise, one could
easily allow for different viscosities inside and outside the
vesicle.

The analytical progress possible within the quasi-
spherical approximation comes with two intrinsic weak-
nesses which cannot easily be circumvented. First, in the
prolate regime, this approximation gives only a rough rep-
resentation of the stationary ellipsoidal mode since it does
not produce a non-zero u2,m without shear. Second, this
approximation neglects higher order couplings between
deformation and flow field which can become relevant at
larger shear rates. However, the relatively good agreement
between the present theory and the previous numerical
work shows that this effect is certainly not dominant for
v >
∼ 0.8.

The present study should encourage further experi-
mental work. By measuring the inclination angle and the
deformation parameter of a single vesicle over the whole
range of shear rates and fitting those against theory using
the full equation (72), one should be able to extract fairly
precise data on excess area and bending rigidity especially
when combined with a variation of temperature [42].

Concerning the experimentally reported oscillatory or
flipping motion, it seems too early for a final assessment.
While it could be that the above mentioned effects mask
such a motion within the theory, there are two more in-
dications for doubting that flipping motion is genuine for
non-spherical vesicles. First, our numerical work [5] which
did not suffer from the spherical approximation, did not
show flipping motion for at least χ >

∼ 0.1. Secondly, con-
trary to the reference given by de Haas et al. [8], previous
work on tanktreading of red-blood-cells [24] did not pre-
dict flipping motion if the viscosities inside and outside are
the same. Only if the inner viscosity is significantly larger
that the outer, a transition to flipping motion occurs.

Helpful discussions with R. Bruinsma, M. Kraus, J. Prost, and
H. Rehage are gratefully acknowledged.

Appendix: Adaptation of Lamb’s solution

Lamb’s solution tells us the velocity field v(r) and pressure
field p(r) in all space if the velocity field is specified on a
sphere with radius R. We adapt the presentation of this
classical problem given in reference [33] whose notation we
follow. Rather than characterizing v(R, θ, φ) by its three
components, Lamb’s solution uses the three quantities

X(θ, φ) ≡ V(r)er , (A.1)

Y (θ, φ) = −R ∇V(r), (A.2)

and

Z(θ, φ) = R er(∇×V(r)), (A.3)
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derived from the field V(r) ≡ v(R, θ, φ). Note that V(r)
is independent of r. Since the rotational component Z
cannot be excited by either bending moments or inhomo-
geneities in the surface tension, we can ignore it in the
following.

Given these boundary values of the velocity, the total
velocity field for r < R becomes

vin(r) =
∑
l≥2

(
∇Φinl (r) +

l+ 3

2η(l + 1)(2l+ 3)
r2∇pinl (r)

−
l

η(l + 1)(2l+ 3)
rpinl (r)

)
(A.4)

where

Φinl (r) =
l∑

m=−l

Φinl,mYl,m(θ, φ)(r/R)l (A.5)

and

pinl (r) =
l∑

m=−l

pinl,mYl,m(θ, φ)(r/R)l. (A.6)

The expansion coefficients Φinl,m, p
in
l,m are determined by

the boundary conditions as

Φinl,m(r) =
R

2l
[(l + 1)Xl,m − Yl,m] (A.7)

and

pinl,m(r) =
η(2l + 3)

lR
[Yl,m − (l − 1)Xl,m].

(A.8)

For r > R, the velocity field can be obtained formally by
replacing l by −l − 1 in these expressions. Explicitly, it
reads

vout(r) =
∑
l≥1

(
∇Φoutl (r) +

−l+ 2

2η(−l)(−2l+ 1)
r2∇poutl (r)

−
−l− 1

η(−l)(−2l+ 1)
rpoutl (r)

)
(A.9)

where

Φoutl (r) =
l∑

m=−l

Φoutl,mYl,m(θ, φ)(r/R)(−l−1)

(A.10)

and

poutl (r) =
l∑

m=−l

poutl,mYl,m(θ, φ)(r/R)(−l−1)

(A.11)

with

Φoutl,m(r) =
R

2(l+ 1)
[lXl,m + Yl,m]

(A.12)

and

poutl,m(r) =
η(2l − 1)

(l + 1)R
[Yl,m + (l + 2)Xl,m].

(A.13)

This velocity field leads to a stress vector acting across
the surface of a sphere of radius r = R as

TR ≡ TRer + Tt

≡

(
−erp+ η

(
∂v

∂r
−

v

r

)
+
η

r
∇(rv)

)
|r=R

.
(A.14)

The normal component of this stress vector at r = R reads
for the inner solution

T inR =
∑
l,m

(2(η/R2)(l − 1)lΦinl,m

+ (lainl − b
in
l )pinl,m)Yl,m(θ, φ), (A.15)

where

ainl ≡
l(l + 2)

(l + 1)(2l+ 3)
(A.16)

and

binl ≡
2l2 + 4l + 3

(l + 1)(2l+ 3)
· (A.17)

Likewise, the normal component of the stress vector at
r = R reads for the outer solution

T outR =
∑
l,m

([2(η/R2)(l + 2)(l + 1)Φoutl,m

− [(l + 1)aoutl + boutl )poutl,m])Yl,m(θ, φ)
(A.18)

where

aoutl ≡
l2 − 1

l(2l− 1)
(A.19)

and

boutl ≡
2l2 + 1

l(2l− 1)
· (A.20)

The tangential part at r = R reads for the inner solution

Tin
t =

∑(
2(η/R2)(l − 1)Φinl,m + ainl p

in
l,m

)
∇SYl,m(θ, φ),

(A.21)

and for the outer solution

Tout
t =

∑(
−2(η/R2)(l + 2)Φoutl,m + aoutl poutl,m

)
×∇SYl,m(θ, φ), (A.22)

where

∇S ≡
1

sin θ
eφ∂φ + eθ∂θ. (A.23)
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Accommodation of these well-known properties of Lamb’s
solution to our problem requires to balance the stress dis-
continuities at the vesicle surface with those exerted by
the vesicle’s bending moments and its inhomogeneous sur-
face tension. The key approximation involved for quasi-
spherical vesicles is to assume that all stresses act on a
sphere of radius R rather than on the time-dependent vesi-
cle’s shape. This approximation can be controlled for small
external flow and small excess area. However, in the ab-
sence of a workable alternative, we will use it for all flow
strengths. The stress balance thus reads

Tout
R = Tin

R +
1
√
g

δF

δR
· (A.24)

The stress exerted by the vesicle follows from (11) in an
expansion in spherical harmonics as

1
√
g

δF

δR
= (κ/R3)

∑
((Elul,m + 2σl,m)Yl,m(θ, φ)er

− σl,m∇
SYl,m(θ, φ)). (A.25)

Evaluating the tangential balance leads to

(κ/ηR2)σl,m =

(
l − 1

l

)
[(l + 1)Xl,m − Yl,m]

+

(
l + 2

l + 1

)
[lXl,m + Yl,m] + ainl

(
2l + 3

l

)
× [Yl,m − (l − 1)Xl,m]− aoutl

(
2l − 1

l + 1

)
× [Yl,m + (l + 2)Xl,m]

=
2l+ 1

l(l + 1)
(Xl,m + 2Yl,m). (A.26)

Evaluating the normal balance, using this result for σl,m,
and setting Xl,m = Xind

l,m and Yl,m = Y indl,m leads to the

relations (37–39) quoted in the main part.
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